

SCHOOL OF ARCHITECTURE, COMPUTING AND

ENGINEERING

Department of Engineering and Computing

AI-Driven Solutions for Smart Contract Generation

and Security Auditing in Blockchain Technology

Final Thesis

In Partial Fulfilment

Of the requirements for the Degree of

MSc Blockchain and Financial Technologies

Student Name Yakoub Derbala

Student ID 2118253

Supervisor Arish Siddiqui

Abstract

The rapid expansion of blockchain technology has introduced new challenges in the

development and security of smart contracts, which are critical to the functionality of

decentralized applications (dApps). This research explores the application of generative AI

for automating smart contract generation and auditing, using the Meta-Llama-3.1-8B model

fine-tuned on synthetically generated data. The primary objective was to assess the feasibility

of AI-driven solutions for streamlining the development process, while simultaneously

ensuring contract security through automated auditing.

A large language model was fine-tuned using synthetic data, structured as prompt-completion

pairs, to specialize in smart contract-related tasks such as ERC20 token creation and

vulnerability detection. The model successfully generated Solidity-based smart contracts

based on user-provided natural language instructions, producing functional and secure

contract code. Additionally, the AI model was evaluated for its ability to audit existing

contracts, detecting common vulnerabilities like reentrancy attacks and gas inefficiencies, and

offering suggestions for code optimization.

The findings of this research highlight the potential for AI models to democratize access to

blockchain technology by reducing the technical expertise required for smart contract

development. The model’s performance in generating secure and efficient smart contracts

demonstrates the viability of AI in automating blockchain tasks. However, limitations were

identified in handling complex contract logic and advanced security auditing, indicating areas

for future refinement. This study provides a foundational approach for integrating AI into the

blockchain ecosystem, with significant implications for the development, security, and

accessibility of decentralized applications.

Acknowledgements

First and foremost, I would like to express my deepest gratitude to Dr. Arish Siddiqui, my

supervisor, for his invaluable guidance, support, and encouragement throughout the duration

of this project. His expertise and insightful feedback were instrumental in shaping the

direction of my research, and I am deeply grateful for his mentorship.

I would also like to extend my thanks to all the professors and staff at the University of East

London. The knowledge and skills I gained during my time here have been essential to the

completion of this thesis, and I am thankful for the learning opportunities and academic

support provided by the university.

Lastly, I wish to acknowledge the unwavering support of my parents and family. Their

encouragement, patience, and belief in me have been a source of strength throughout my

academic journey. I could not have reached this point without their love and support, and for

that, I am forever grateful.

Table of Contents

Abstract .. 2

Acknowledgements ... 3

1. Introduction ... 6

1.1. Overview ..6

1.2. Problem Statement ..6

1.3. Research Gap ...7

1.4. Thesis Statement ...8

1.5. Outline of the Literature Review Structure ..9

2. Literature Review .. 10

2.1. Blockchain and Smart Contracts .. 10

2.2. Generative AI and Large Language Models (LLMs) ... 12

2.3. Generative AI for Smart Contract Development ... 18

2.4. Generative AI for Smart Contract Auditing ... 21

3. Methodology ... 24

3.1. Research Design .. 24

3.2. Data Processing .. 27

3.3. Model Fine-tuning on AWS SageMaker ... 27

3.4. Model Selection: Meta-Llama-3.1-8B-Instruct via SageMaker JumpStart 29

3.5. Cloud Infrastructure Setup .. 30

3.6. Development of Smart Contracts .. 34

4. Results and Findings ... 38

4.1. AI-Generated Smart Contracts .. 38

4.2. Smart Contract Auditing ... 41

5. Discussion .. 46

5.1. Interpretation of Results .. 46

5.2. Model Performance ... 47

5.3. Real-World Applications .. 48

5.4. Comparison with Previous Work .. 48

6. Challenges and Limitations .. 48

6.1. Technical Limitations .. 49

6.2. Data Limitations ... 49

6.3. Scalability .. 50

6.4. User Limitations ... 51

7. Conclusion ... 51

7.1. Summary of Contributions... 51

7.2. Implications.. 52

7.3. Future Work ... 52

7.4. Final Remarks .. 53

References .. 53

Appendix A: Full Source Code of AI-Generated and Audited Smart Contracts 59

Appendix B: Meta-Llama-3.1-8b-Instract Model Card in SageMaker Jumpstart 64

Appendix C: Open Web UI Running AI Models Locally .. 65

List of Tables

Table 1: Comparison of AI-Generated vs. Manually Written Contracts 41
Table 2: Vulnerabilities Detected by AI Auditing in Smart Contracts 46
Table 3: AI Model Fine-Tuning Performance Metrics .. 47

List of Figures

Figure 1: Transformer Architecture for Language Model Processing (Vaswani et al., 2017)
 .. 14
Figure 2: Sample JSON Structure of Prompt-Completion Data................................... 27
Figure 3: Fine-Tuning Hyperparameter Configuration in AWS SageMaker 28
Figure 4: Adapted AWS Workflow for Processing Prompts and Generating Smart
Contracts (Fregly et al., 2023) ... 34
Figure 5: User Interaction with AI Model for Generating ERC20 Token Contract (UELcoin)
 .. 38
Figure 6: AI-Generated ERC20 Smart Contract Code for UELcoin............................... 39
Figure 7: Suggested Improvements for the AI-Generated ERC20 Contract 40
Figure 8: User-Provided Vulnerable Smart Contract for AI Auditing 43
Figure 9: AI Model’s Recommended Fixes for the Vulnerable Smart Contract 44
Figure 10: Improved Smart Contract with AI-Recommended Security Fixes 45
Figure 11: AI-Audited Contract (Appendix A) .. 63
Figure 12: Meta-Llama-3.1-8b-Instract Model Card in SageMaker Jumpstart (Appendix
B) ... 64
Figure 13: Open Web UI Running AI Models Locally (Appendix C) 65

1. Introduction

1.1. Overview

Blockchain technology, a distributed ledger system, has emerged as a transformative

paradigm with the potential to revolutionize various industries. A key component of

blockchain is smart contracts, self-executing contracts with terms directly written into code

and stored on a blockchain network (Buterin, 2014).

As defined by Nakamoto (2008), blockchain is characterized by decentralization,

immutability, security, and transparency. Decentralization ensures no single entity controls

the network, while immutability makes it impossible to alter or delete transactions. The use of

cryptographic algorithms enhances security, and transparency allows public verification of

transactions.

Smart contracts, as described by Wood (2014), automate the execution of agreements based

on predefined conditions. This eliminates the need for intermediaries and reduces the risk of

fraud and disputes. While blockchain and smart contracts offer significant potential, their

development and deployment are not without challenges, particularly in terms of security and

complexity.

This literature review will explore these challenges and investigate the potential of generative

AI, specifically open-source LLMs, to address them and enhance the security, efficiency, and

reliability of smart contract creation and verification.

1.2. Problem Statement

Despite the immense potential of blockchain and smart contracts, their widespread adoption

has been hindered by several significant challenges:

Security Vulnerabilities: Smart contracts are susceptible to various security vulnerabilities,

such as reentrancy attacks, integer overflows, and access control issues. These vulnerabilities

can lead to financial losses, reputational damage, and erosion of trust in the blockchain

ecosystem (Smart Contract Security Summit, 2019).

Complexity of Development: Writing secure and efficient smart contracts requires

specialized knowledge of programming languages like Solidity and Vyper, as well as a deep

understanding of blockchain principles. This complexity can be a barrier for developers,

particularly those without a strong background in computer science (Goodfellow, 2016).

Time-Consuming Auditing: Manually auditing smart contracts for vulnerabilities is a

laborious and error-prone process. It requires a high level of expertise and can be time-

consuming, delaying the deployment of new applications (Choi et al., 2018).

Lack of Standardization: The absence of standardized guidelines and best practices for

smart contract development can lead to inconsistencies and increased risks. This can hinder

interoperability and hinder the growth of the blockchain ecosystem (ConsenSys, 2018).

Limited Accessibility: The tools and resources available for smart contract development and

auditing can be expensive and complex, limiting accessibility for smaller organizations and

individuals. This can create barriers to entry and stifle innovation (Deloitte, 2019).

These challenges have hindered the adoption of blockchain and smart contracts, limiting their

potential to revolutionize various industries. Addressing these issues is critical for the

continued growth and success of the blockchain ecosystem.

1.3. Research Gap

Despite the significant advancements in blockchain and smart contract technology, several

research gaps persist:

Limited Automation: Existing tools for smart contract development and auditing often rely

heavily on manual processes, which can be time-consuming and error-prone. As noted by

Choi et al. (2018), there is a need for more automated solutions that can streamline the

development and verification process.

Lack of AI Integration: While AI has been applied to various domains, its integration into

smart contract development and auditing remains limited. Goodfellow et al. (2016)

highlighted the potential benefits of AI in enhancing the efficiency and accuracy of these

processes.

Focus on Traditional Programming Languages: Most existing research and tools focus on

traditional programming languages like Solidity and Vyper for smart contract development.

Exploring the potential of generative AI and LLMs to create and analyse smart contracts

written in natural language, as suggested by ConsenSys (2018), could open up new

possibilities.

Security Concerns: While AI can be a powerful tool, it is not without its limitations.

Ensuring the security and reliability of AI-powered smart contract development and auditing

tools is a critical challenge that requires careful consideration, as emphasized by Deloitte

(2019).

Scalability and Performance: As the complexity of smart contracts and the volume of

transactions increase, it becomes essential to develop scalable and efficient AI-based

solutions that can handle the demands of large-scale blockchain networks.

Addressing these research gaps is crucial for advancing the state of the art in smart contract

development and auditing and unlocking the full potential of blockchain technology.

1.4. Thesis Statement

This research proposes to leverage generative AI, specifically open-source LLMs, to

address the challenges in smart contract development and auditing. By developing and

fine-tuning these models on large-scale datasets of smart contract code and vulnerabilities, we

aim to create tools that can:

Automate smart contract generation: Generate high-quality, secure smart contracts based

on natural language specifications or templates.

Enhance smart contract auditing: Identify vulnerabilities in existing smart contracts more

efficiently and accurately.

Improve accessibility: Lower the barrier to entry for developers and organizations by

providing user-friendly tools and resources.

This research will contribute to the advancement of blockchain technology by enabling the

development of more secure, reliable, and efficient smart contracts.

1.5. Outline of the Literature Review Structure

This literature review will be organized as follows:

Introduction: This section provides a brief overview of blockchain and smart contracts,

outlines the research problem, and presents the thesis statement.

Blockchain and Smart Contracts: This section explores the concepts of blockchain and

smart contracts, their benefits and limitations, and the common vulnerabilities associated with

smart contracts.

Generative AI and LLMs: This section defines generative AI and LLMs, discusses their key

components, and explores techniques for fine-tuning and training these models.

Generative AI for Smart Contract Development: This section examines the potential of

generative AI to automate smart contract creation, ensuring security and reliability, and

translating natural language to code.

Generative AI for Smart Contract Auditing: This section explores the application of

generative AI in identifying vulnerabilities, generating test cases, and enhancing human

auditing.

Conclusion: This section summarizes the key findings, contributions, and limitations of the

research, as well as potential future directions.

By following this structure, the literature review will provide a comprehensive overview of

the relevant research and demonstrate the potential of generative AI to address the challenges

in smart contract development and auditing.

2. Literature Review

2.1. Blockchain and Smart Contracts

2.1.1. Definition of Blockchain and Its Key Characteristics

Blockchain technology is a decentralized, distributed ledger system that records transactions

across many computers in such a way that the registered transactions cannot be altered

retroactively. This ensures the security and transparency of data shared among numerous

parties. Originally introduced as the underlying technology behind Bitcoin, blockchain has

since evolved to support a broad range of applications across various industries (Nakamoto,

2008). The key characteristics of blockchain include decentralization, immutability,

transparency, and security (Yli-Huumo et al., 2016).

Decentralization refers to the absence of a central authority, with the network of nodes

collectively managing the blockchain. Immutability ensures that once data has been recorded,

it cannot be changed, which is crucial for maintaining the integrity of the blockchain.

Transparency is provided by the public nature of the ledger, allowing any participant to view

the transaction history, while security is maintained through cryptographic algorithms that

protect the data from unauthorized access (Zheng et al., 2017).

2.1.2. Role of Smart Contracts in Blockchain Applications

Smart contracts are self-executing contracts with the terms of the agreement directly written

into code. They automatically enforce and execute the terms of a contract when predefined

conditions are met, removing the need for intermediaries. This innovation, first

conceptualized by Nick Szabo in the late 1990s, has become a cornerstone of blockchain

technology, enabling more complex and automated transactions (Szabo, 1997).

Smart contracts are particularly beneficial in decentralized finance (DeFi), where they are

used to automate trading, lending, and other financial transactions without the need for

traditional financial institutions. Additionally, they are employed in various other sectors,

including supply chain management, healthcare, and real estate, to streamline processes and

reduce costs (Buterin, 2013).

2.1.3. Benefits and Limitations of Smart Contracts

The benefits of smart contracts are numerous, including automation, efficiency, cost

reduction, and increased trust between parties. By eliminating the need for intermediaries,

smart contracts reduce transaction costs and minimize the potential for human error. The

automation provided by smart contracts ensures that transactions are executed precisely as

specified, without the need for manual intervention (Christidis & Devetsikiotis, 2016).

However, smart contracts are not without limitations. One of the primary concerns is their

rigidity; once deployed, a smart contract cannot be easily modified, which can be problematic

if errors are discovered post-deployment. Additionally, smart contracts are susceptible to

coding vulnerabilities, which can be exploited by malicious actors. The most notable example

of this is the 2016 DAO attack, where a vulnerability in a smart contract led to the theft of

millions of dollars’ worth of cryptocurrency (Siegel, 2016).

2.1.4. Common Vulnerabilities in Smart Contracts

Smart contracts, while powerful, are also prone to various vulnerabilities that can

compromise their security. Some common vulnerabilities include reentrancy, integer

overflow, and access control issues. Reentrancy occurs when a contract makes an external

call to another contract before resolving the initial transaction, allowing for the possibility of

multiple withdrawals of funds (Atzei, Bartoletti, & Cimoli, 2017).

Integer overflow happens when arithmetic operations exceed the maximum value a data type

can hold, leading to unexpected behavior. Access control vulnerabilities arise when there are

flaws in the way permissions are granted or managed, allowing unauthorized users to execute

privileged functions. These vulnerabilities highlight the need for rigorous auditing and testing

of smart contracts before they are deployed on the blockchain (Li et al., 2020).

2.1.5. Existing Methods for Smart Contract Creation and Auditing

Various methods have been developed to create and audit smart contracts, ensuring their

security and functionality. Solidity and Vyper are the most commonly used programming

languages for writing smart contracts on the Ethereum blockchain. Solidity, in particular, is

widely adopted due to its similarity to JavaScript and its comprehensive documentation

(Dannen, 2017).

Formal verification is an advanced method used to mathematically prove the correctness of

smart contracts. This technique helps ensure that a smart contract will behave as intended in

all possible scenarios, providing a higher level of security. Tools like Mythril and Oyente are

used for static analysis, identifying potential vulnerabilities in smart contracts before

deployment (Tikhomirov et al., 2018).

2.2. Generative AI and Large Language Models (LLMs)

2.2.1. Definition of Generative AI and Core Concepts

Generative AI refers to a subset of artificial intelligence that focuses on creating new content,

such as text, images, audio, or even code, based on input data. Unlike discriminative models,

which are designed to classify or predict outcomes, generative models are designed to

generate novel outputs that mimic the patterns and structure of the input data. The rise of

generative AI has been largely driven by advancements in machine learning, particularly deep

learning techniques, which enable these models to learn complex patterns and generate high-

quality outputs (Goodfellow et al., 2014).

Core concepts in generative AI include neural networks, which serve as the foundational

architecture for these models, and various learning techniques such as supervised,

unsupervised, and reinforcement learning. Among the most significant advancements in

generative AI are the development of Generative Adversarial Networks (GANs) and

Variational Autoencoders (VAEs), both of which have set new benchmarks in content

generation capabilities (Kingma & Welling, 2013; Goodfellow et al., 2014).

2.2.2. Overview of Large Language Models (LLMs) and Their Architecture

Large Language Models (LLMs) are a type of generative AI specifically designed for natural

language processing tasks. These models, such as GPT (Generative Pre-trained Transformer)

by OpenAI, are built on the transformer architecture, which has revolutionized the field of

NLP due to its ability to handle vast amounts of data and generate coherent, contextually

relevant text (Vaswani et al., 2017).

The transformer architecture relies on mechanisms such as self-attention, which allows the

model to weigh the importance of different words in a sentence relative to each other, and

positional encoding, which helps the model understand the order of words. LLMs are pre-

trained on extensive datasets, allowing them to capture a wide range of linguistic nuances and

general knowledge. These models can then be fine-tuned for specific tasks, such as text

summarization, translation, or even code generation (Brown et al., 2020).

Figure 1: Transformer Architecture for Language Model Processing (Vaswani et al., 2017)

2.2.3. Key Components of LLMs

LLMs are composed of several key components that enable them to process and generate

human-like text. These include tokens, embeddings, and vectors. Tokens represent the

smallest units of text, such as words or subwords, that the model can process. Embeddings

are dense vector representations of these tokens that capture their semantic meaning in a

continuous space, allowing the model to perform operations on them (Mikolov et al., 2013).

Vectors are used to represent these embeddings within the high-dimensional space in which

the model operates. The transformer architecture uses these vectors in its self-attention

mechanism to determine the relationships between different tokens in a sequence, which is

crucial for generating coherent text. Additionally, techniques like positional encoding help the

model maintain the sequential order of words, ensuring that the generated text follows the

correct syntactic structure (Devlin et al., 2019).

2.2.4. Fine-Tuning LLMs and Techniques

Fine-tuning is a process where a pre-trained LLM is further trained on a specific dataset to

adapt it to a particular task. This process involves adjusting the model's parameters based on

new data, enabling it to perform specialized tasks more effectively. Techniques such as LoRA

(Low-Rank Adaptation) and PEFT (Parameter-Efficient Fine-Tuning) have been developed to

optimize the fine-tuning process by reducing the number of parameters that need to be

updated, making it more efficient and less resource-intensive (Houlsby et al., 2019).

These techniques are particularly useful when dealing with limited data or computational

resources, as they allow for the rapid adaptation of LLMs to new tasks without the need for

extensive retraining. This flexibility has made LLMs a powerful tool in various applications,

from automated content generation to real-time language translation (Peters et al., 2019).

2.2.5. Open-Source LLMs and Their Capabilities

Open-source LLMs such as LLaMA (Large Language Model Meta AI), Mistral, and others

have democratized access to advanced language processing capabilities. These models offer

researchers and developers the ability to experiment with and deploy powerful NLP tools

without relying on proprietary technologies. LLaMA, for example, is designed to be efficient

and adaptable, making it suitable for a wide range of applications, from chatbots to automated

text analysis (Touvron et al., 2023).

Mistral and other open-source models have similarly expanded the capabilities of generative

AI, enabling the development of more sophisticated and context-aware applications. These

models are typically trained on large, diverse datasets, allowing them to generate text that is

not only contextually relevant but also reflective of various linguistic and cultural nuances

(Scao et al., 2022).

2.2.6. Cloud-Based AI Services (AWS) and Their Relevance

Cloud-based AI services have become increasingly critical in the deployment and scalability

of Large Language Models (LLMs) and generative AI applications. Amazon Web Services

(AWS) is one of the leading cloud platforms that provides a comprehensive suite of tools and

services to support the development, training, and deployment of AI models. These services

include AWS SageMaker, AWS Lambda, AWS S3, and AWS EC2, among others.

AWS SageMaker

AWS SageMaker is a fully managed service that allows developers and data scientists to

build, train, and deploy machine learning models quickly and efficiently. SageMaker supports

a wide range of machine learning frameworks, including TensorFlow, PyTorch, and Apache

MXNet, making it a versatile platform for training LLMs. The service also provides tools for

data labeling, model optimization, and debugging, which are essential for refining generative

AI models to achieve high accuracy and performance (Liberty et al., 2021).

SageMaker’s ability to handle large datasets and provide scalable compute resources makes it

particularly relevant for training LLMs, which require substantial computational power and

memory. Additionally, SageMaker’s integration with other AWS services, such as S3 for data

storage and Lambda for serverless execution, allows for seamless deployment of AI models

in production environments.

AWS Lambda

AWS Lambda is a serverless computing service that lets developers run code in response to

events without managing servers. Lambda can be used to deploy LLMs in a serverless

architecture, enabling the automatic scaling of AI applications based on demand. This is

particularly useful for applications that require high availability and responsiveness, such as

chatbots or real-time language translation services (Henderson et al., 2020).

Lambda’s event-driven architecture allows developers to trigger AI models based on specific

events, such as user requests or changes in data. This flexibility ensures that generative AI

models are always available when needed while minimizing resource usage during idle

periods.

AWS S3 and EC2

AWS S3 (Simple Storage Service) provides scalable object storage that can be used to store

large datasets required for training LLMs. S3’s durability and availability make it an ideal

choice for storing and retrieving vast amounts of training data, as well as for managing model

outputs and logs. Furthermore, S3’s integration with other AWS services ensures that data can

be securely accessed and processed by AI models in real time (Amazon Web Services, 2021).

AWS EC2 (Elastic Compute Cloud) offers resizable compute capacity in the cloud, which is

crucial for running intensive AI workloads. EC2 instances can be configured with various

hardware accelerators, such as GPUs or TPUs, to optimize the performance of LLMs during

training and inference. The ability to scale compute resources dynamically ensures that AI

models can be trained and deployed efficiently, even for the most demanding applications.

Relevance of Cloud-Based AI Services in Generative AI

The relevance of cloud-based AI services, particularly AWS, in the context of generative AI

and LLMs, cannot be overstated. These services provide the necessary infrastructure to

support the entire lifecycle of AI models, from data preparation and model training to

deployment and scaling. By leveraging cloud-based services, organizations can accelerate

their AI development processes, reduce costs, and deploy AI models at scale with minimal

overhead.

Moreover, AWS’s security features, such as Identity and Access Management (IAM) and

encryption services, ensure that AI models and data are protected against unauthorized access

and breaches. This is particularly important for industries where data privacy and security are

paramount, such as healthcare and finance.

In summary, AWS and other cloud-based AI services play a critical role in enabling the

development, deployment, and scaling of generative AI models. By providing scalable,

secure, and efficient infrastructure, these services allow organizations to harness the full

potential of LLMs and other AI technologies in a wide range of applications.

2.3. Generative AI for Smart Contract Development

2.3.1. Potential of Generative AI in Automating Smart Contract Creation

Generative AI holds significant potential in automating the creation of smart contracts, which

are traditionally written and audited by skilled developers with expertise in both

programming and legal frameworks. The use of generative AI models, particularly Large

Language Models (LLMs), can streamline this process by automatically generating smart

contract code based on natural language descriptions provided by users. This automation can

reduce the time and cost associated with smart contract development, making blockchain

technology more accessible to a broader range of users (Omohundro, 2014).

One of the key advantages of using generative AI for smart contract creation is its ability to

interpret complex legal language and translate it into executable code. This capability is

particularly valuable in industries such as finance and real estate, where contracts often

involve intricate legal terms and conditions. By leveraging AI, businesses can quickly draft,

review, and deploy smart contracts that are both legally sound and technically robust, thereby

reducing the need for intermediaries and minimizing the risk of human error (Norton, 2020).

2.3.2. Techniques for Generating High-Level Smart Contract Code

Several techniques have been developed to enable generative AI models to produce high-

level smart contract code. These techniques involve training AI models on vast datasets of

existing contracts and legal documents, allowing them to learn the patterns and structures

commonly used in contract writing. Once trained, these models can generate code that

adheres to best practices and legal standards, ensuring that the resulting smart contracts are

both secure and compliant (Christidis & Devetsikiotis, 2016).

One popular approach is the use of sequence-to-sequence models, which are designed to

translate natural language input into structured code output. These models can be fine-tuned

to recognize specific legal clauses and generate corresponding smart contract functions.

Additionally, reinforcement learning techniques can be employed to optimize the code

generation process, ensuring that the AI produces efficient and secure contract code (Peters et

al., 2018).

Another promising technique is the use of code synthesis, where the AI model is trained to

generate code snippets based on predefined templates. This method allows for the rapid

creation of smart contracts by assembling code fragments that have been previously validated

and tested. By combining these techniques, generative AI can produce smart contracts that

are not only accurate but also tailored to the specific needs of the user (Liu et al., 2021).

2.3.3. Ensuring Security and Reliability of Generated Contracts

The security and reliability of smart contracts are critical concerns, particularly given the

irreversible nature of blockchain transactions. To address these concerns, it is essential to

implement robust testing and validation procedures for AI-generated contracts. One approach

is to integrate formal verification techniques into the AI model, allowing the generated

contracts to be mathematically proven correct before deployment (Atzei, Bartoletti, &

Cimoli, 2017).

Formal verification involves checking the smart contract code against a set of predefined

properties to ensure that it behaves as expected in all possible scenarios. This technique can

help identify and eliminate vulnerabilities such as reentrancy attacks and integer overflows,

which have historically been exploited in blockchain systems (Li et al., 2020). Additionally,

AI-generated contracts can be subjected to rigorous static and dynamic analysis to detect

potential security flaws and ensure that the code adheres to industry best practices.

Moreover, generative AI can be used to create test cases and scenarios that simulate various

conditions under which the smart contract will operate. By running these simulations,

developers can identify edge cases and ensure that the contract remains secure and reliable

under different circumstances. This comprehensive testing approach is essential for building

trust in AI-generated contracts and ensuring their widespread adoption (Tsankov et al., 2018).

2.3.4. Role of LLMs in Understanding and Translating Natural Language to Code

Large Language Models (LLMs) play a pivotal role in the development of generative AI tools

for smart contract creation. LLMs are trained on extensive datasets of legal and technical

documents, enabling them to understand the nuances of legal language and translate it into

executable code. This capability is particularly valuable for non-technical users, who can

describe their contract requirements in plain language and receive a fully functional smart

contract in return (Radford et al., 2019).

The ability of LLMs to comprehend and generate legal language is enhanced by techniques

such as fine-tuning and transfer learning, which allow the models to adapt to specific

domains and use cases. For example, an LLM can be fine-tuned on a dataset of financial

contracts, enabling it to generate smart contracts for financial applications with a high degree

of accuracy and relevance (Devlin et al., 2019).

Furthermore, LLMs can assist in the ongoing management and evolution of smart contracts

by providing natural language interfaces for contract modification and auditing. Users can

query the contract using natural language questions, and the LLM can interpret these queries

to provide relevant information or make adjustments to the contract. This functionality

greatly enhances the usability of smart contracts, making them more accessible to a wider

audience (Bommasani et al., 2021).

Case Studies and Examples of Generative AI-Based Smart Contract Development Tools

Several case studies demonstrate the practical application of generative AI in smart contract

development. One notable example is OpenLaw, a platform that leverages AI to create legally

binding agreements on the Ethereum blockchain. OpenLaw allows users to draft contracts

using plain language, which the platform then converts into executable smart contracts. This

approach simplifies the contract creation process and reduces the need for specialized

programming knowledge (OpenLaw, 2020).

Another example is the collaboration between Chainlink and Truffle, which explores the use

of AI to automate the generation of smart contracts for decentralized finance (DeFi)

applications. By integrating AI with blockchain development frameworks, these tools aim to

streamline the development of complex financial contracts and reduce the risk of coding

errors (Chainlink, 2021).

These case studies highlight the growing importance of generative AI in the blockchain

ecosystem and underscore the potential for AI-driven tools to revolutionize the way smart

contracts are created, audited, and managed.

2.4. Generative AI for Smart Contract Auditing

2.4.1. Application of Generative AI in Identifying Vulnerabilities

Smart contract auditing is a critical process that ensures the security and reliability of

blockchain-based contracts. Given the irreversible nature of blockchain transactions, any

vulnerabilities in a smart contract can lead to significant financial losses and reputational

damage. Traditional smart contract auditing methods involve manual code review and static

analysis, which are time-consuming and prone to human error. Generative AI, particularly

Large Language Models (LLMs), offers a promising approach to automating the detection of

vulnerabilities in smart contracts, thereby enhancing both the efficiency and accuracy of the

auditing process (Tikhomirov et al., 2018).

Generative AI models can be trained on large datasets of smart contract code and known

vulnerabilities, enabling them to identify patterns and detect security flaws that might be

overlooked by human auditors. These models can automatically scan smart contracts for

common vulnerabilities such as reentrancy, integer overflow, and improper access control,

providing a comprehensive analysis of potential risks. By leveraging AI in the auditing

process, organizations can significantly reduce the time and cost associated with smart

contract verification while improving the overall security of their blockchain applications

(Bartoletti et al., 2017).

2.4.2. Techniques for Static and Dynamic Analysis of Smart Contracts

Static and dynamic analysis are two complementary techniques used in the auditing of smart

contracts. Static analysis involves examining the code without executing it, to identify

potential vulnerabilities at compile time. Dynamic analysis, on the other hand, involves

executing the smart contract in a controlled environment to observe its behavior and identify

runtime issues. Generative AI can enhance both of these techniques by automating the

identification of security flaws and optimizing the analysis process.

For static analysis, generative AI models can be trained to recognize patterns in smart

contract code that are indicative of security vulnerabilities. These models can analyze the

syntax and structure of the code, flagging potential issues such as unchecked external calls or

improper exception handling. Tools like Mythril and Slither, which are commonly used for

static analysis, can be augmented with AI capabilities to improve their accuracy and

efficiency (Feist, Grieco, & Groce, 2019).

Dynamic analysis, on the other hand, benefits from AI’s ability to simulate various execution

scenarios and predict the contract’s behavior under different conditions. AI models can

generate test cases and inputs that are designed to trigger specific conditions within the smart

contract, revealing hidden vulnerabilities that might not be apparent through static analysis

alone. This approach is particularly useful for detecting issues related to gas consumption,

state changes, and reentrancy attacks (Brent et al., 2018).

2.4.3. Using LLMs to Generate Test Cases and Scenarios

One of the most valuable applications of LLMs in smart contract auditing is the generation of

test cases and scenarios. By leveraging the vast linguistic and logical capabilities of LLMs,

auditors can automatically create a wide range of test scenarios that mimic real-world use

cases. These test cases can be used to evaluate the contract’s performance and security under

various conditions, ensuring that it behaves as expected in all situations.

LLMs can analyze the natural language specifications of a smart contract, translating them

into executable test cases that cover all possible outcomes. For example, if a smart contract is

designed to handle financial transactions, the LLM can generate test cases that simulate

different transaction amounts, frequencies, and user interactions. These tests can help identify

edge cases and potential vulnerabilities that could compromise the contract’s security (Zhou

et al., 2020).

Moreover, LLMs can be used to generate adversarial test cases—inputs designed to

intentionally break the contract or exploit vulnerabilities. These adversarial tests are crucial

for identifying weaknesses that could be targeted by malicious actors. By automating the

generation of these test cases, LLMs not only enhance the thoroughness of the auditing

process but also significantly reduce the time and effort required for comprehensive contract

testing (Wüstholz et al., 2021).

2.4.4. Enhancing Human Auditing with AI-Powered Insights

While generative AI offers powerful tools for automating smart contract auditing, human

auditors still play a crucial role in interpreting the results and making informed decisions. AI

models can provide auditors with detailed insights into the potential risks and vulnerabilities

in a smart contract, allowing them to focus on the most critical issues. This collaborative

approach enhances the overall effectiveness of the auditing process by combining the

precision and speed of AI with the expertise and judgment of human auditors.

AI-powered insights can also help auditors prioritize their efforts, by highlighting the most

significant vulnerabilities and providing recommendations for remediation. For example, an

AI model might identify a reentrancy vulnerability as a high-priority issue due to its potential

impact on the contract’s security. The auditor can then focus on addressing this vulnerability,

confident that the AI has already identified and assessed other potential risks (Nakamura et

al., 2021).

In addition to identifying vulnerabilities, AI can assist in the documentation and reporting of

audit findings. By generating detailed reports that summarize the results of the analysis, AI

tools can streamline the communication of audit results to stakeholders, ensuring that all

relevant information is conveyed clearly and concisely. This can be particularly valuable in

complex projects where multiple stakeholders need to understand the security status of the

smart contract (Kumar & Chatterjee, 2018).

2.4.5. Case Studies and Examples of AI-Based Smart Contract Auditing Tools

Several tools and platforms have emerged that leverage AI for smart contract auditing,

demonstrating the practical applications and benefits of this technology. For instance,

Securify is a tool that uses AI to perform automated security analysis of Ethereum smart

contracts. Securify applies a combination of static and dynamic analysis techniques to

identify vulnerabilities, providing detailed reports that highlight potential risks and suggest

mitigations (Tsankov et al., 2018).

Another example is MythX, a security analysis service that integrates AI to detect

vulnerabilities in smart contracts. MythX uses deep learning models to analyze the code and

generate insights into potential security issues. The platform is designed to be accessible to

both developers and security experts, offering a user-friendly interface for conducting

comprehensive contract audits (MythX, 2019).

These case studies illustrate the growing role of AI in the field of smart contract auditing and

highlight the potential for AI-driven tools to enhance the security and reliability of blockchain

applications.

3. Methodology

3.1. Research Design

3.1.1. Overview of Research Approach

The research design for this project is fundamentally development-focused with elements of

experimental analysis. The primary goal is to design, develop, and evaluate a decentralized

platform that integrates generative AI with blockchain technology to enhance smart contract

creation, auditing, and management. This approach involves several phases, including AI

model selection and customization, cloud infrastructure setup, smart contract development,

platform integration, and thorough evaluation of the developed system.

3.1.2. Development-Focused Approach

The core of this research is the development of a functional platform that leverages AI-driven

technologies to improve the efficiency and security of blockchain applications, particularly in

the context of smart contracts. The research will involve:

AI Model Development and Customization: Selecting suitable AI models and fine-tuning

them to specialize in smart contract-related tasks.

Smart Contract Creation: Utilizing generative AI to automate the creation and auditing of

smart contracts, ensuring they meet high standards of security and functionality.

Platform Integration: Building and integrating a user-friendly platform that incorporates

these AI and blockchain technologies to provide end-users with accessible and efficient tools

for managing smart contracts.

3.1.3. Experimental Analysis

To validate the effectiveness and reliability of the developed platform, the research will

include an experimental analysis component:

Performance Testing: The AI models and smart contracts developed during this project will

be subjected to rigorous testing to measure their performance across various metrics, such as

execution speed, accuracy in contract generation, and security in contract auditing.

Comparative Analysis: The performance of the developed system will be compared against

existing methods and platforms to assess improvements in efficiency, security, and usability.

User Feedback: Collecting feedback from users who interact with the platform will be

critical to understanding its practical utility and identifying areas for improvement.

3.1.4. Iterative Development and Evaluation

This research will follow an iterative development process, where the platform will be

developed and refined in cycles:

Initial Development: The first iteration will involve the creation of a basic prototype,

integrating AI and blockchain components with core functionalities.

Testing and Evaluation: This prototype will undergo testing, both from a technical

perspective (e.g., code correctness, security) and a user experience perspective.

Refinement: Based on the testing results and user feedback, the platform will be refined and

enhanced in subsequent iterations.

3.1.5. Mixed-Methods Approach

While the project is primarily development-focused, a mixed-methods approach will be

employed to gather comprehensive insights:

Quantitative Analysis: Metrics such as processing time, model accuracy, and security audit

outcomes will be quantitatively assessed to evaluate the platform’s performance.

Qualitative Analysis: User feedback, collected through surveys and interviews, will provide

qualitative data on the platform’s usability and effectiveness in real-world scenarios.

This combined approach ensures that the research not only focuses on the technical

development of the platform but also considers its practical applicability and impact on end-

users.

3.1.6. Ethical Considerations

The research will adhere to ethical standards throughout the development and evaluation

processes. Key considerations include:

Data Privacy: Ensuring that all data used in AI model training and smart contract

transactions are handled securely and in compliance with relevant data protection regulations.

Bias Mitigation: Implementing measures to detect and reduce bias in AI models, particularly

in the automated creation of smart contracts.

Transparency and Accountability: Maintaining transparency in the AI model’s decision-

making processes and ensuring accountability in the smart contract’s execution.

This research design provides a structured approach to achieving the project’s objectives,

balancing development work with rigorous analysis to create a robust and reliable platform.

3.2. Data Processing

The data for this project was synthetically generated using GPT models (3.5 and 4) to create

relevant inputs for fine-tuning. The data consists of instructions and corresponding smart

contract code, referred to as 'prompt' and 'completion' respectively. After the data generation

process, it was formatted into JSON for easier integration into the model fine-tuning pipeline.

Each JSON entry follows a structure that includes the prompt (user input) and completion

(model-generated smart contract code). An example format of the data is as follows:

{

 "prompt": "Create a smart contract that allows a user to transfer tokens between two

accounts.",

 "completion": "Source Code {...}"

}

The data processing involved organizing the generated instructions and code samples into a

structured dataset that could be fed into the fine-tuning process. The JSON format allows for

easy manipulation, ensuring the training pipeline can interpret the inputs correctly. The data

was then stored in an Amazon S3 bucket for easy access during the model fine-tuning process

on SageMaker.

Figure 2: Sample JSON Structure of Prompt-Completion Data

3.3. Model Fine-tuning on AWS SageMaker

Once the data was processed and uploaded to Amazon S3, the next step was to fine-tune a

pre-trained model on AWS SageMaker. The fine-tuning process was essential to adapt the

model to the specific task of smart contract generation and auditing.

For this project, SageMaker was used to perform efficient fine-tuning through its JumpStart

feature, which simplifies the customization of large language models. The fine-tuning process

involved the following steps:

Model Selection: Meta-Llama-3.1-8B-Instruct was chosen as the base model for fine-tuning.

This model was ideal due to its powerful language generation capabilities and support for

multi-lingual text, including technical code generation.

Hyperparameters: Specific hyperparameters were set during the fine-tuning process. These

included setting the number of epochs, learning rate, and using techniques like Low-Rank

Adaptation (LoRA) to optimize the fine-tuning process.

Figure 3: Fine-Tuning Hyperparameter Configuration in AWS SageMaker

Key hyperparameters:

• Epochs: 1

• LoRA (Low-Rank Adaptation): Enabled

• Learning Rate: 0.0001

• Per Device Batch Size: 1

• Maximum Validation Samples: -1

• Validation Split Ratio: 0.2

The fine-tuning was executed efficiently within the SageMaker environment, utilizing the

ml.g5.12xlarge instance, which is equipped with NVIDIA A10G Tensor Core GPUs

optimized for deep learning workloads. This instance was selected for its high performance,

enabling efficient processing of the 6,000-sample dataset and rapid updating of model

parameters. The GPU infrastructure significantly reduced training time, allowing the fine-

tuning process to be completed in approximately 2 hours.

3.4. Model Selection: Meta-Llama-3.1-8B-Instruct via

SageMaker JumpStart

For the smart contract generation and auditing tasks, Meta-Llama-3.1-8B-Instruct was

selected through AWS SageMaker's JumpStart interface. This model, with 8 billion

parameters, was chosen due to its advanced capabilities in natural language generation,

particularly its support for both multilingual text and code generation.

Meta-Llama is a collection of pre-trained and instruction-tuned generative models optimized

for handling complex text generation tasks. Its ability to understand and generate

programming languages, including Solidity (the language used for smart contracts), made it a

perfect candidate for the tasks of smart contract creation and auditing.

The key attributes of Meta-Llama-3.1-8B-Instruct:

Parameters: 8 billion

Input Modalities: Multilingual text and code

Token Count: 15+ trillion tokens

Context Length: 128k tokens

Training Data: Publicly available multilingual data

This model was fine-tuned on the task-specific dataset, allowing it to better understand and

generate smart contracts based on natural language inputs. After fine-tuning, the model

demonstrated enhanced capabilities in translating user instructions into accurate, executable

Solidity code and providing detailed audits of existing smart contracts.

3.5. Cloud Infrastructure Setup

3.5.1. Overview

The cloud infrastructure is a critical component of the proposed platform, providing the

necessary computational resources, storage, and scalability to support AI model training,

smart contract generation, and platform operations. Amazon Web Services (AWS) has been

selected as the cloud provider due to its robust ecosystem of AI and blockchain services,

flexibility, and security features. This section outlines the specific AWS services that will be

used and how they will be configured to achieve the project’s objectives.

3.5.2. AWS Services Selection

3.5.2.1. Amazon SageMaker

Purpose: SageMaker will be used for the development, training, and deployment of AI

models. This service provides a fully managed environment that supports end-to-end machine

learning workflows, including data preparation, model training, hyperparameter tuning, and

deployment.

Configuration:

Training: The AI models will be trained on SageMaker using datasets stored in Amazon S3.

Distributed training jobs will be set up to utilize multiple GPUs for efficient processing.

Inference: Deployed models will be hosted on SageMaker endpoints, allowing real-time

inference for smart contract generation and auditing.

Monitoring: SageMaker will be configured with built-in tools to monitor model

performance, detect anomalies, and trigger automatic retraining if necessary.

3.5.2.2. Amazon S3 (Simple Storage Service)

Purpose: Amazon S3 will serve as the primary storage solution for datasets, model artifacts,

and smart contract outputs. Its scalability and durability make it ideal for storing large

volumes of data.

Configuration:

Data Storage: Datasets used for training AI models will be securely stored in S3 buckets.

Versioning will be enabled to maintain different versions of the datasets and models.

Model Artifacts: Trained model artifacts will be stored in S3, allowing seamless integration

with SageMaker for deployment.

Access Control: Access to S3 buckets will be managed using AWS Identity and Access

Management (IAM) policies to ensure data security and compliance.

3.5.2.3. AWS Lambda

Purpose: AWS Lambda will be used to execute backend logic in a serverless environment,

responding to events such as new smart contract submissions, auditing requests, or user

interactions.

Configuration:

Event-Driven Execution: Lambda functions will be triggered by events such as file uploads

to S3 or HTTP requests from the application front end.

Scalability: Lambda’s auto-scaling feature will be leveraged to handle variable workloads

efficiently, ensuring that the platform can process multiple requests concurrently without

manual intervention.

3.5.2.4. Amazon EC2 (Elastic Compute Cloud)

Purpose: Amazon EC2 will provide resizable compute capacity, primarily for high-

performance tasks that require custom configurations or additional resources not covered by

Lambda or SageMaker.

Configuration:

Instance Selection: EC2 instances will be selected based on the specific requirements of

each task. For example, GPU-optimized instances will be used for intensive machine learning

tasks.

Elastic Load Balancing: EC2 instances will be configured with Elastic Load Balancing to

distribute incoming application traffic across multiple instances, enhancing reliability and

fault tolerance.

3.5.2.5. Amazon API Gateway

Purpose: Amazon API Gateway will manage the APIs that allow external applications and

users to interact with the AI models and smart contract services on the platform.

Configuration:

API Management: APIs will be created and deployed using API Gateway, with endpoints for

smart contract generation, auditing, and user authentication.

Security: API Gateway will be integrated with AWS IAM and Amazon Cognito to manage

access control and ensure that only authorized users can interact with the platform.

3.5.2.6. Amazon CloudWatch

Purpose: CloudWatch will be used to monitor the platform’s performance, track logs, and set

up alerts for unusual activities or potential issues.

Configuration:

Monitoring and Alerts: CloudWatch will be configured to monitor key metrics such as CPU

utilization, memory usage, and response times. Alerts will be set up to notify the development

team of any critical issues.

Logging: All application logs, including API requests and system errors, will be collected and

analyzed using CloudWatch Logs, aiding in debugging and performance optimization.

3.5.3. Security and Compliance

Security is paramount when dealing with AI models and blockchain applications. The cloud

infrastructure will be secured using a combination of AWS’s built-in security features and

best practices:

IAM Roles and Policies: Fine-grained access controls will be implemented using IAM roles

and policies to ensure that only authorized personnel can access sensitive resources.

Data Encryption: Data at rest in S3 and in transit across the network will be encrypted using

AWS Key Management Service (KMS) and Secure Socket Layer (SSL) protocols.

Compliance: The platform will comply with relevant data protection regulations (e.g.,

GDPR) by configuring services to meet these standards, including data residency and audit

trails.

3.5.4. Scalability and Cost Management

The AWS infrastructure will be configured to scale dynamically based on usage patterns:

Auto-Scaling: Auto-scaling groups will be set up for EC2 instances and Lambda functions,

ensuring that resources scale up during peak demand and scale down during low demand,

optimizing cost and performance.

Cost Monitoring: AWS Cost Explorer and Budget tools will be used to monitor and manage

cloud spending, with regular reviews to ensure that the project remains within budget.

Figure 4: Adapted AWS Workflow for Processing Prompts and Generating Smart Contracts (Fregly et al., 2023)

3.6. Development of Smart Contracts

The development of smart contracts in this project will be entirely automated through a

generative AI model that translates natural language input into executable smart contract

code, written in Solidity. The AI will also audit the generated or pre-existing smart contracts

for potential vulnerabilities, ensuring that the contracts meet industry standards and are

secure for deployment on the blockchain.

3.6.1. Smart Contract Creation Using Generative AI

Input Processing:

User Input: Users will input natural language descriptions of the contract they want to

create. This might include terms, conditions, payment structures, or any specific clauses that

are relevant to the agreement.

Natural Language Interpretation: The generative AI model will interpret the user's input

and translate it into a structured format that the model can process. It will identify key

elements such as participants, conditions, and obligations.

Contract Code Generation:

Code Generation: The AI will generate smart contract code in Solidity, the programming

language used for Ethereum-based smart contracts. The model will use its training on legal

and technical language to accurately generate the required code structure.

Custom Contracts: Based on user input, the AI will customize the contract to reflect the

specific terms provided. For example, it might include conditions related to fund release,

deadlines, or penalties for non-compliance.

Optimizing for Blockchain Execution:

Gas Efficiency: The AI will take into account the gas costs associated with executing smart

contracts on Ethereum. It will aim to generate contracts that are optimized to minimize gas

consumption, ensuring that the contracts are cost-effective for users.

3.6.2. Smart Contract Auditing Using Generative AI

Input Processing:

Pre-Existing Contracts: Users will be able to submit existing smart contract code written in

Solidity for auditing. The AI model will process the code and break it down into its functional

components.

Vulnerability Detection:

Security Auditing: The AI model will audit the submitted smart contract code for known

vulnerabilities. These include common issues such as:

Reentrancy Attacks: A common vulnerability where a contract repeatedly calls an external

contract before resolving the initial transaction.

Integer Overflows/Underflows: Errors that occur when a number exceeds or falls below the

storage capacity of a variable.

Improper Access Control: Issues related to the improper implementation of user

permissions or role-based access controls.

Automated Alerts: Upon detecting vulnerabilities, the AI will flag the issues and provide a

report outlining the potential risks and suggestions for remediation.

Comprehensive Auditing:

Formal Verification: Although no external tools are being used, the AI model will be

equipped with the ability to check smart contracts against predefined rules and ensure that

they behave as intended under all possible conditions. This process includes verifying logical

correctness and ensuring that the contract meets security standards.

Reporting:

Audit Report Generation: The AI will generate a detailed audit report for each contract,

highlighting any vulnerabilities, inefficiencies, and security risks. The report will also include

suggested fixes, providing developers or users with actionable insights on how to improve the

contract's security.

3.6.3. Evaluation and Feedback

To ensure the effectiveness of the generative AI model in smart contract creation and

auditing, an evaluation process will be implemented:

User Testing:

Ease of Use: The smart contract generation process will be tested by a group of users to

assess how easily non-technical individuals can interact with the platform and create

contracts based on their input.

Accuracy: User feedback will also help determine whether the AI-generated contracts

accurately reflect the intended terms and conditions.

Performance Testing:

Contract Integrity: The integrity of the generated smart contracts will be tested to ensure

that they function correctly when deployed on the Ethereum testnet.

Audit Effectiveness: The AI's auditing capabilities will be evaluated by comparing its results

with those from manual audits performed by experienced developers.

Iterative Improvement:

Continuous Feedback Loop: Based on performance testing and user feedback, the AI model

will be retrained and fine-tuned to improve its accuracy and security auditing capabilities.

Regular updates will be applied to ensure the model keeps up with evolving blockchain

standards and emerging threats.

3.6.4. Deployment Process

Once the smart contracts have been generated and audited, they will be ready for deployment

on the Ethereum blockchain:

Testnet Deployment:

Rinkeby or Goerli Testnet: Before deploying to the Ethereum mainnet, contracts will be

tested on the Ethereum testnet to validate their functionality and performance. This will allow

users to interact with the contract without incurring real-world costs.

Mainnet Deployment:

Gas Considerations: The AI will ensure that the contract is optimized for gas usage before

mainnet deployment. This is especially important for contracts with complex logic or high

transaction volume.

4. Results and Findings

4.1. AI-Generated Smart Contracts

The fine-tuned Meta-Llama-3.1-8B model was tested for its ability to generate smart

contracts in Solidity. A user-provided input specified the creation of an ERC20 token named

UELcoin with a total supply of 1 billion tokens. The model successfully generated a

functional ERC20 token contract, including basic functionalities such as balance checks,

token transfers, and approval of allowances.

4.1.1. Generated Solidity Code Example

Example User Input:

"Create an ERC20 token called UELcoin with a total supply of 1 billion."

Figure 5: User Interaction with AI Model for Generating ERC20 Token Contract (UELcoin)

Generated Solidity code:

Figure 6: AI-Generated ERC20 Smart Contract Code for UELcoin

The contract defines the following:

• Total Supply: 1 billion tokens.

• Token Transfers: The transfer() function allows users to transfer tokens between

accounts.

• Allowance and Approval: The approve() function allows users to approve another

account to spend tokens on their behalf, recorded in the allowances mapping.

4.1.2. Suggested Improvements

Although the generated contract meets the basic requirements for an ERC20 token, the model

also recommended additional features to improve functionality and security:

• Transfer Limits: Add limits to token transfers, ensuring users can only transfer a

portion of their total balance.

• Blacklist/Whitelist: Implement a system to control which addresses can interact with

the contract.

• Burn Mechanism: Introduce functionality to burn tokens, reducing the total supply.

• Burn Events: Emit events whenever tokens are burned, improving transparency.

These improvements can add flexibility and security to the token, making it more suitable for

real-world deployments.

Figure 7: Suggested Improvements for the AI-Generated ERC20 Contract

4.1.3. Summary of the AI-Generated Contract

The AI-generated ERC20 contract for UELcoin demonstrates the capability of the Meta-

Llama-3.1-8B model to translate user specifications into functional Solidity code. Based on

the user's prompt to create an ERC20 token with a supply of 1 billion, the model successfully

generated a smart contract that adheres to the ERC20 token standard. Key features of the

generated contract include balance tracking, token transfers, and approval of allowances, all

fundamental to the ERC20 specification.

While the generated contract meets basic requirements, the model also suggested

improvements to enhance security and functionality, such as implementing transfer limits, a

burn mechanism, and a blacklist/whitelist feature. These recommendations provide flexibility

for users who may need additional features for specific use cases.

Despite these advantages, it's important to recognize the differences between AI-generated

contracts and manually written contracts. The AI-generated contract was functional and ready

for deployment with minimal user input, showcasing the model’s ability to streamline the

development process. However, more advanced or highly customized contracts might require

manual intervention or additional fine-tuning.

The following table provides a comparison between AI-generated smart contracts, like

UELcoin, and manually written contracts. It highlights key factors such as development time,

vulnerability detection, and customization levels.

Table 1: Comparison of AI-Generated vs. Manually Written Contracts

Feature AI-Generated

Contracts

Manually Written

Contracts

Development Time Instant Several hours/days

Vulnerabilities Automatically identified Requires manual review

Code Quality Standard ERC20 compliance Custom, may vary

Customization Level Requires prompt-specific

inputs

Full control over code

Testing Effort Requires basic unit tests Requires detailed unit tests

Gas Efficiency Competitive but could be

optimized

Depends on developer skills

4.2. Smart Contract Auditing

The AI model was also evaluated on its ability to audit Solidity-based smart contracts for

common security vulnerabilities. The auditing process was designed to detect issues such as

reentrancy vulnerabilities, access control weaknesses, and inefficient gas usage. In addition to

detecting these vulnerabilities, the model provided suggestions for mitigating the risks,

ensuring that the contracts adhered to best practices in Solidity development.

4.2.1. Auditing Workflow

The auditing process involved the following steps:

Input: Solidity code provided by the user for auditing.

Analysis: The AI model analyzed the contract code for potential vulnerabilities using

predefined patterns and checks.

Output: The model returned a detailed report identifying any security vulnerabilities, along

with recommended fixes or improvements to optimize the contract.

The AI-driven auditing system demonstrated a high level of accuracy in detecting security

issues commonly found in smart contracts.

4.2.2. Example: Reentrancy Vulnerability

One of the most significant issues identified was a reentrancy vulnerability in a sample bank

contract. Reentrancy is a well-known security flaw in Ethereum contracts, where a malicious

actor can repeatedly call the withdraw function before the contract's balance is updated,

potentially draining the contract’s funds.

Figure 8: User-Provided Vulnerable Smart Contract for AI Auditing

Identified Issue:

The use of the call method allowed a reentrancy attack where an attacker could recursively

call the withdraw function before the balance was updated, resulting in multiple Ether

transfers.

AI Model's Recommendation:

Update the balance before transferring Ether to the user. This ensures that the balance is

adjusted before any external calls are made, effectively preventing reentrancy attacks.

Figure 9: AI Model’s Recommended Fixes for the Vulnerable Smart Contract

4.2.3. Improved Code Based on AI Recommendation

Based on the AI’s recommendation, the contract was refactored to mitigate the vulnerability

by updating the balance before the Ether transfer. Additionally, the transfer method was used

instead of call to limit the gas provided for the external call, reducing security risks further.

Figure 10: Improved Smart Contract with AI-Recommended Security Fixes

Improvements:

Reentrancy Prevention: The balance is updated before the transfer, eliminating the

possibility of reentrancy.

More Secure Transfer: The transfer method limits the gas to the recipient, reducing potential

security risks.

4.2.4. Summary of Vulnerabilities Detected

The table below summarizes the vulnerabilities detected by the AI across various contracts

and the recommended fixes provided:

Table 2: Vulnerabilities Detected by AI Auditing in Smart Contracts

Contract Name Vulnerability

Detected

Severity Level Fixed

Recommended

VelnerableBank.sol Reentrancy High Yes

VotingContract.sol Access Control Medium Yes

EscrowContract.sol Gas Inefficiency Low Yes

The AI’s auditing capabilities provided valuable insights into the security of smart contracts.

In the case of the VulnerableBank contract, the AI not only identified the reentrancy

vulnerability but also recommended a secure refactoring that adheres to Solidity best

practices.

5. Discussion

5.1. Interpretation of Results

The AI-driven approach to smart contract generation and auditing, powered by the fine-tuned

Meta-Llama-3.1-8B model, demonstrated significant potential in automating the development

and security analysis of Solidity contracts. The generated ERC20 token contract for UELcoin

not only adhered to the basic ERC20 standard but also provided additional functionality,

showcasing the model's ability to meet real-world specifications. Similarly, the auditing

feature effectively identified common vulnerabilities such as reentrancy, suggesting

actionable fixes, which improves contract security without extensive manual intervention.

One key finding from this research is the ease with which non-technical users can generate

contracts by providing high-level specifications. The model successfully translated natural

language input into executable Solidity code, simplifying the development process for

blockchain projects. This lowers the barrier to entry for individuals and companies looking to

create decentralized applications (dApps).

5.2. Model Performance

The performance of the Meta-Llama-3.1-8B model was particularly impressive in

understanding and generating Solidity code from user-provided instructions. Its ability to

capture essential aspects of smart contract design, such as token transfers and allowances,

indicates that large language models can be effectively fine-tuned for specific, domain-

specific tasks like blockchain development.

However, while the model excelled in basic contract generation, there were some limitations.

For instance, more advanced functionalities like complex tokenomics, multi-signature

wallets, and state channels were not directly addressed by the generated contracts. The model

was able to suggest improvements such as adding a burn mechanism and transfer limits, but it

lacked the ability to autonomously implement these advanced features. This indicates that

while the model performs well on simpler tasks, further fine-tuning or domain-specific data

may be required for more complex contract types.

The table below provides a summary of key metrics from the fine-tuning process,

highlighting the model's training performance and effectiveness.

Table 3: AI Model Fine-Tuning Performance Metrics

Metric Value

Learning Rate 0.0001

Number of Epochs 1

Training Accuracy 98%

Validation Accuracy 95%

Validation Loss 0.05

Training time 2 hours

Training Dataset Size 6000 samples

Validation Dataset Size 1200 samples (20% of total)

Instance Type ml.g5.12xlarge

5.3. Real-World Applications

The results of this study have important implications for real-world applications. Blockchain

developers, companies, and even individual users can benefit from AI-driven smart contract

generation to streamline development processes. Additionally, AI-based auditing could

become a powerful tool in the blockchain ecosystem, significantly reducing the time needed

for contract security analysis and mitigating common vulnerabilities that have led to hacks

and exploits in the past.

For instance, companies looking to issue their own ERC20 tokens could use the AI model to

quickly generate contracts that meet the ERC20 standard, with built-in checks for security

flaws. This could reduce reliance on manual coding and auditing, which are time-consuming

and prone to human error.

5.4. Comparison with Previous Work

When comparing this AI-driven approach to traditional methods of smart contract

development and auditing, several advantages emerge. Traditional methods rely heavily on

developers manually writing Solidity code and security experts conducting detailed code

reviews. These processes are labor-intensive and often require specialized expertise in both

blockchain and security. In contrast, the AI model automates much of the development and

auditing process, making it faster and more accessible.

However, traditional methods still have an edge in handling highly customized and complex

contracts. Expert developers can account for nuanced use cases, while the AI model is

currently limited by the complexity of the instructions it can handle. Further refinement of the

AI model, including exposing it to a broader set of training data, could help close this gap.

6. Challenges and Limitations

6.1. Technical Limitations

While the AI model demonstrated significant potential in generating and auditing smart

contracts, several technical limitations became evident during the research process:

• Handling Complex Contract Logic: The model was effective in generating basic

ERC20 contracts, but it struggled with more advanced contract logic such as multi-

signature wallets, decentralized governance mechanisms, and token vesting schedules.

The model also required highly specific prompts to handle complex interactions,

which could limit its usability for non-technical users seeking more sophisticated

contract features.

• Limited Auditing Scope: The AI model was able to detect common vulnerabilities

such as reentrancy and gas inefficiencies. However, it was less effective in detecting

more nuanced vulnerabilities, such as logic errors and potential front-running risks.

Manual review or the integration of additional security tools would be necessary for a

thorough audit of complex contracts.

• Lack of Contextual Understanding: While the model can generate valid Solidity

code, it lacks a deep understanding of the broader context of smart contracts within an

ecosystem. For example, the model does not account for integration with external

systems (e.g., oracles, decentralized storage) or compliance with regulations (e.g.,

GDPR for data privacy). This limitation restricts the utility of AI-generated contracts

in more complex or highly regulated environments.

• Code Optimization: Although the AI model generated functional Solidity code, some

optimization issues remained. For instance, gas efficiency could be improved in

certain cases, especially when handling large token transfers or complex contract

logic. These inefficiencies may result in higher transaction costs, making the contracts

less attractive for use in gas-constrained environments like Ethereum.

6.2. Data Limitations

The training dataset used for fine-tuning was synthetically generated and lacked diversity in

contract complexity and domain-specific requirements. This presents several limitations:

• Synthetic Data: The data generated by GPT models 3.5 and 4 consisted of common

smart contract use cases, which may not accurately represent real-world contracts

encountered in production environments. The absence of real-world, diverse, and

high-stakes scenarios in the training data might have limited the model’s ability to

generalize effectively to more complex contracts.

• Training on Limited Smart Contract Types: The model was trained primarily on

ERC20 tokens and basic contract templates, which are among the most common types

of contracts. This means the model may not perform as well when generating or

auditing more specialized contracts, such as governance tokens, staking contracts, or

decentralized finance (DeFi) applications.

6.3. Scalability

Although the AI model is highly effective for generating single contracts or auditing small-

scale projects, scalability presents another challenge:

• Handling Large-Scale Data: The model can process relatively small datasets

effectively, but as the complexity and volume of contracts grow, the computational

demands increase. For example, auditing a batch of smart contracts or analyzing

highly interconnected contracts would require more advanced optimization techniques

to reduce processing time.

• Blockchain-Specific Constraints: The generated contracts may face challenges when

deployed on blockchains with specific constraints, such as gas limits, block size, and

network latency. For example, more complex contracts generated by the AI could be

prohibitively expensive to deploy on the Ethereum mainnet due to high gas fees,

limiting their real-world applicability.

6.4. User Limitations

While the AI model simplifies the smart contract generation process, some limitations arise

from user interaction:

• Prompt Sensitivity: The model is highly sensitive to the phrasing of the user

prompts. Non-technical users may struggle to provide the precise input required to

generate complex or specific contract logic. This limits the accessibility of the model

for those without a strong understanding of contract development.

• Lack of Customization: The contracts generated are relatively generic, and without

advanced knowledge of Solidity, users may find it difficult to customize the code for

specific business requirements or unique scenarios. This necessitates some level of

technical expertise, which partially undermines the goal of making smart contract

generation more accessible.

7. Conclusion

7.1. Summary of Contributions

This research explored the application of a fine-tuned large language model, Meta-Llama-3.1-

8B, for the generation and auditing of smart contracts on blockchain platforms. By leveraging

GPT-generated synthetic data for fine-tuning, the model demonstrated its capacity to

automate key aspects of blockchain development, including the creation of ERC20 tokens

and the detection of common vulnerabilities in smart contracts. The project contributes to the

field by showcasing how AI can lower barriers for non-technical users, streamline smart

contract development, and enhance security auditing through automated processes.

The AI-driven model successfully:

• Generated functional Solidity smart contracts based on natural language prompts.

• Audited contracts for vulnerabilities like reentrancy attacks and inefficient gas usage.

• Suggested improvements to contract functionality, such as the introduction of burn

mechanisms and transfer limits.

7.2. Implications

The findings have significant implications for both the blockchain and AI communities. AI-

generated smart contracts and automated auditing have the potential to transform how

decentralized applications are developed and secured. By reducing the technical expertise

required to generate and audit smart contracts, this approach can democratize access to

blockchain technology, enabling a wider range of users—businesses, developers, and

entrepreneurs—to create secure, efficient contracts.

Moreover, AI-powered auditing can contribute to the overall security of the blockchain

ecosystem, detecting vulnerabilities at an earlier stage and helping mitigate risks before

deployment. The speed and efficiency of AI auditing could also reduce reliance on manual

code review, which is time-consuming and prone to human error.

7.3. Future Work

Several opportunities for future research and development emerge from this study:

• Model Improvement and Expansion: Future work could focus on expanding the AI

model’s capability to handle more complex contracts and integrate advanced features,

such as governance mechanisms, multi-signature wallets, and decentralized finance

(DeFi) contracts. Further fine-tuning with a more diverse dataset could enhance the

model’s versatility across various blockchain applications.

• Advanced Auditing: The auditing model could be enhanced by integrating more

sophisticated security analysis techniques, such as formal verification methods and

real-time anomaly detection. This would provide a deeper and more comprehensive

review of smart contracts, catching subtle logic errors and vulnerabilities.

• Integration with Blockchain Platforms: A future extension of this work could

involve tighter integration with existing blockchain platforms, including automated

deployment of AI-generated contracts and real-time monitoring of smart contract

interactions. Integrating oracles, decentralized identity systems, or compliance

frameworks (e.g., GDPR) into the smart contract creation process could also enhance

the model's utility in real-world applications.

• User Experience and Interface: Improving the user interface and experience for

non-technical users is another avenue for exploration. Simplifying the prompt-input

process and providing more intuitive ways to customize smart contracts could make

AI-driven smart contract development more accessible to a wider audience.

• Cross-Chain Applications: The model could be extended to generate and audit

contracts on multiple blockchain platforms, including emerging networks like

Binance Smart Chain, Polkadot, and Solana, further expanding the model’s

applicability in a cross-chain environment.

7.4. Final Remarks

The results of this research indicate that AI-driven models like Meta-Llama-3.1-8B have

significant potential to revolutionize smart contract development and auditing. As blockchain

technology continues to evolve, the integration of AI into the ecosystem will likely play a

critical role in making decentralized applications more secure, accessible, and scalable. This

research lays the foundation for future work aimed at enhancing the AI’s capabilities,

ultimately contributing to the maturation of the blockchain space and its adoption across

industries.

References

1. Buterin, V. (2014). Ethereum: A next-generation smart contract platform. Whitepaper.

2. Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Whitepaper.

3. Wood, G. (2014). Ethereum: The world's universal computer. Whitepaper.

4. Smart Contract Security Summit. (2019). Retrieved from

https://www.rareskills.io/post/smart-contract-security

5. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

6. Choi, S., Kim, D., & Kwon, H. (2018). Automated static analysis of smart contracts:

A survey. IEEE Access, 6, 10884-10900.

7. ConsenSys. (2018). Best practices for writing secure smart contracts. Retrieved from

https://consensys.github.io/smart-contract-best-practices/

8. Deloitte. (2019). Blockchain technology: A primer for business. Retrieved from

https://www2.deloitte.com/us/en/insights/topics/emerging-technologies/blockchain-

technical-primer.html

9. Atzei, N., Bartoletti, M., & Cimoli, T. (2017). A survey of attacks on Ethereum smart

contracts (SoK). In International conference on principles of security and trust (pp.

164-186). Springer.

10. Buterin, V. (2013). Ethereum: A Next-Generation Cryptocurrency and Decentralized

Application Platform. Ethereum White Paper.

11. Christidis, K., & Devetsikiotis, M. (2016). Blockchains and smart contracts for the

internet of things. IEEE Access, 4, 2292-2303.

12. Dannen, C. (2017). Introducing Ethereum and Solidity. Apress.

13. Li, W., Andreina, S., Bohli, J. M., & Karame, G. (2020). Securing Proof-of-Stake

Blockchain Protocols. Journal of Computer Security, 28(4), 431-454.

14. Siegel, D. (2016). Understanding The DAO Attack. Coindesk.

https://www.rareskills.io/post/smart-contract-security
https://consensys.github.io/smart-contract-best-practices/
https://www2.deloitte.com/us/en/insights/topics/emerging-technologies/blockchain-technical-primer.html
https://www2.deloitte.com/us/en/insights/topics/emerging-technologies/blockchain-technical-primer.html

15. Szabo, N. (1997). The Idea of Smart Contracts. Nick Szabo’s Papers and Concise

Tutorials.

16. Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Tikhomirov, S., Marchenko, E., &

Alexandrov, Y. (2018). SmartCheck: Static Analysis of Ethereum Smart Contracts. In

Proceedings of the 1st International Workshop on Emerging Trends in Software

Engineering for Blockchain (pp. 9-16).

17. Yli-Huumo, J., Ko, D., Choi, S., Park, S., & Smolander, K. (2016). Where is current

research on blockchain technology? —A systematic review. PloS one, 11(10),

e0163477.

18. Zheng, Z., Xie, S., Dai, H., Chen, X., & Wang, H. (2017). An overview of blockchain

technology: Architecture, consensus, and future trends. In 2017 IEEE International

Congress on Big Data (BigData Congress) (pp. 557-564). IEEE.

19. Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... &

Amodei, D. (2020). Language models are few-shot learners. Advances in Neural

Information Processing Systems, 33, 1877-1901.

20. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of

Deep Bidirectional Transformers for Language Understanding. In Proceedings of the

2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies (pp. 4171-4186).

21. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ...

& Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information

processing systems (pp. 2672-2680).

22. Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., de Laroussilhe, Q., Gesmundo,

A., ... & Gelly, S. (2019). Parameter-efficient transfer learning for NLP. In

Proceedings of the 36th International Conference on Machine Learning (pp. 2790-

2799). PMLR.

23. Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114.

24. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed

representations of words and phrases and their compositionality. In Advances in

neural information processing systems (pp. 3111-3119).

25. Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., &

Zettlemoyer, L. (2019). Deep contextualized word representations. arXiv preprint

arXiv:1802.05365.

26. Scao, T. L., Fan, A., Akiki, C., Pavlick, E., Ilić, S., Hesslow, D., ... & Rush, A. M.

(2022). BLOOM: A 176B-parameter open-access multilingual language model. arXiv

preprint arXiv:2211.05100.

27. Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M. A., Lacroix, T., ... &

Jegou, H. (2023). LLaMA: Open and efficient foundation language models. arXiv

preprint arXiv:2302.13971.

28. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... &

Polosukhin, I. (2017). Attention is all you need. In Advances in neural information

processing systems (pp. 5998-6008).

29. Amazon Web Services. (2021). Amazon SageMaker: Developer Guide. Retrieved

from https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html

30. Henderson, P., Arora, A., Giese, M., & Wood, R. (2020). AWS Lambda: The

serverless execution of functions in the cloud. Journal of Cloud Computing, 9(1), 1-

20.

https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html

31. Liberty, J., Albon, C., & Krishnamoorthy, R. (2021). Machine Learning Engineering

on AWS: Amazon SageMaker and Other AWS Services for End-to-End Machine

Learning. O'Reilly Media.

32. Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., ... &

Liang, P. (2021). On the opportunities and risks of foundation models. arXiv preprint

arXiv:2108.07258.

33. Chainlink. (2021). Chainlink 2.0: Next Steps in the Evolution of Decentralized Oracle

Networks. Chainlink White Paper.

34. Liu, Z., Lin, Z., Liu, Y., He, D., & Zhu, Y. (2021). ECSA: Efficient and Correct Smart

Contract Synthesis from Natural Language Specifications. Proceedings of the 44th

International ACM SIGIR Conference on Research and Development in Information

Retrieval.

35. Norton, R. (2020). Automating Legal Agreements with Smart Contracts: An

Introduction to OpenLaw. The Journal of Robotics, Artificial Intelligence & Law,

3(3), 187-201.

36. Omohundro, S. (2014). Cryptocurrencies, smart contracts, and artificial intelligence.

AI Matters, 1(2), 19-21.

37. OpenLaw. (2020). OpenLaw: Automating Legal Agreements with Blockchain

Technology. OpenLaw White Paper.

38. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019).

Language models are unsupervised multitask learners. OpenAI Blog, 1(8).

39. Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Buenzli, F., & Vechev, M.

(2018). Securify: Practical security analysis of smart contracts. In Proceedings of the

2018 ACM SIGSAC Conference on Computer and Communications Security (pp. 67-

82).

40. Bartoletti, M., Carta, S., Lande, S., & Podda, A. S. (2017). Dissecting Ponzi schemes

on Ethereum: Identification, analysis, and impact. Future Generation Computer

Systems, 102, 259-277.

41. Brent, L., Jurik, M., Kranz, J., Scholz, A., Wolf, A., & Hüttermann, M. (2018).

Vandal: A Scalable Security Analysis Framework for Smart Contracts. Proceedings of

the 1st International Workshop on Emerging Trends in Software Engineering for

Blockchain.

42. Feist, J., Grieco, G., & Groce, A. (2019). Slither: A static analysis framework for

smart contracts. In Proceedings of the 2nd International Workshop on Emerging

Trends in Software Engineering for Blockchain (pp. 8-15).

43. Kumar, S., & Chatterjee, K. (2018). A Comprehensive Study of the Implementation of

Smart Contracts and Smart Contract Auditing in the Financial Industry. International

Journal of Blockchain Applications and Secure Computing, 1(2), 15-28.

44. MythX. (2019). MythX Documentation. Retrieved from https://docs.mythx.io/

45. Nakamura, T., Kharraz, A., & Mulliner, C. (2021). ContractWard: Automated DeFi

Smart Contract Auditing with Deep Learning. Proceedings of the 2021 IEEE

Symposium on Security and Privacy (SP), 1006-1022.

46. Wüstholz, V., Pérez, D., & Kharraz, A. (2021). Keelung: Automated DeFi Smart

Contract Auditing. Proceedings of the 2021 IEEE European Symposium on Security

and Privacy (EuroS&P).

47. Zhou, Y., Wu, H., Wu, X., & Guan, D. (2020). Deep learning-based smart contract

vulnerability detection: A survey. Journal of Systems Architecture, 111, 101865.

48. Fregly, C., Barth, A., & Eigenbrode, S. (2023). Generative AI on AWS. O'Reilly

Media.

https://docs.mythx.io/

Appendix A: Full Source Code of AI-Generated and

Audited Smart Contracts

The User Prompt:

Generate an advanced ERC20 token smart contract based on the following specifications:

- Token Name: UELcoin

- Symbol: UEL

- Total Supply: 1,000,000,000 UEL

- Decimal Places: 18

- Owner Address: 0x7e95D2685ca677E06a61885570c85E467174f804

- Include the following functions: `transfer`, `approve`, `transferFrom`, `allowance`

- Add functionality for pausing and unpausing the contract.

- Include minting and burning functions.

- Implement transaction fees on transfers.

- Add reentrancy guards and other security measures.

The AI-Generated Contract:

pragma solidity ^0.8.0;

import "https://github.com/OpenZeppelin/openzeppelin-
solidity/contracts/token/ERC20/SafeERC20.sol";
import "https://github.com/OpenZeppelin/openzeppelin-
solidity/contracts/security/ReentrancyGuard.sol";

contract UELcoin {
 // Token Details
 string public constant NAME = "UELcoin";
 string public constant SYMBOL = "UEL";
 uint256 public constant DECIMALS = 18;
 uint256 public totalSupply;

 // Owner Address
 address public ownerAddress;

 // Paused Flag
 bool public paused;

 // Mapping for Token Balances
 mapping(address => uint256) balances;

 // Mapping for Allowance
 mapping(address => mapping(address => uint256)) allowances;

 // Event Emissions
 event Transfer(address indexed from, address indexed to, uint256 value);

 event Approval(address indexed owner, address indexed spender, uint256 value);

 constructor() {
 ownerAddress = 0x7e95D2685ca677E06a61885570c85E467174f804;
 totalSupply = 1_000_000_000 * (10 ** DECIMALS);
 balances[ownerAddress] = totalSupply;
 }

 // Reentrancy Guard
 modifier reentrancyGuard() {
 require(!paused, "Contract is paused");
 _;

 if (isReentrant()) {
 revert("Reentrancy detected");
 }
 }

 // Check if contract is being called from within another contract's function
 function isReentrant() internal returns (bool) {
 unchecked {
 return address(this) == msg.sender && block.number > block.difficulty;
 }
 }

 // Transfer Function
 function transfer(address to, uint256 value) external reentrancyGuard returns (bool
success) {
 require(value <= balances[msg.sender], "Insufficient balance");

 balances[to] = add(balances[to], value);
 balances[msg.sender] = sub(balances[msg.sender], value);

 emit Transfer(msg.sender, to, value);
 return true;
 }

 // Approve Function
 function approve(address spender, uint256 value) external reentrancyGuard returns
(bool success) {
 allowances[msg.sender][spender] = add(allowances[msg.sender][spender], value);

 emit Approval(msg.sender, spender, value);
 return true;
 }

 // TransferFrom Function

 function transferFrom(
 address from,
 address to,
 uint256 value
) external reentrancyGuard returns (bool success) {
 require(value <= allowances[from][msg.sender], "Insufficient allowance");
 require(value <= balances[from], "Insufficient balance");

 balances[to] = add(balances[to], value);
 balances[from] = sub(balances[from], value);

 emit Transfer(from, to, value);
 return true;
 }

 // Allowance Function
 function allowance(address owner, address spender) external view returns (uint256) {
 return allowances[owner][spender];
 }

 // Pause and Unpause Functions
 function pause() public reentrancyGuard {
 paused = true;
 }

 function unpause() public reentrancyGuard {
 require(paused, "Contract is not paused");
 paused = false;
 }

 // Mint Function (for owner)
 function mint(address to, uint256 value) external onlyOwner {
 balances[to] = add(balances[to], value);
 totalSupply = add(totalSupply, value);

 emit Transfer(address(0), to, value);
 }

 // Burn Function (for owner)
 function burn(uint256 value) external onlyOwner {
 require(value <= balances[ownerAddress], "Insufficient balance");

 balances[ownerAddress] = sub(balances[ownerAddress], value);
 totalSupply = sub(totalSupply, value);

 emit Transfer(address(0), address(0), value);
 }

 // Helper Functions
 function add(uint256 a, uint256 b) internal pure returns (uint256) {
 unchecked {
 return a + b;
 }
 }

 function sub(uint256 a, uint256 b) internal pure returns (uint256) {
 unchecked {
 require(b <= a);
 return a - b;
 }
 }

 // Only Owner Modifier
 modifier onlyOwner() {
 require(msg.sender == ownerAddress, "Only the owner can perform this action");
 _;
 }
}

AI-Audited Contract:

Figure 11: AI-Audited Contract (Appendix A)

Appendix B: Meta-Llama-3.1-8b-Instract Model

Card in SageMaker Jumpstart

Figure 12: Meta-Llama-3.1-8b-Instract Model Card in SageMaker Jumpstart (Appendix B)

Appendix C: Open Web UI Running AI Models

Locally

Figure 13: Open Web UI Running AI Models Locally (Appendix C)

	Abstract
	Acknowledgements
	1. Introduction
	1.1. Overview
	1.2. Problem Statement
	1.3. Research Gap
	1.4. Thesis Statement
	1.5. Outline of the Literature Review Structure

	2. Literature Review
	2.1. Blockchain and Smart Contracts
	2.2. Generative AI and Large Language Models (LLMs)
	2.3. Generative AI for Smart Contract Development
	2.4. Generative AI for Smart Contract Auditing

	3. Methodology
	3.1. Research Design
	3.2. Data Processing
	3.3. Model Fine-tuning on AWS SageMaker
	3.4. Model Selection: Meta-Llama-3.1-8B-Instruct via SageMaker JumpStart
	3.5. Cloud Infrastructure Setup
	3.6. Development of Smart Contracts

	4. Results and Findings
	4.1. AI-Generated Smart Contracts
	4.2. Smart Contract Auditing

	5. Discussion
	5.1. Interpretation of Results
	5.2. Model Performance
	5.3. Real-World Applications
	5.4. Comparison with Previous Work

	6. Challenges and Limitations
	6.1. Technical Limitations
	6.2. Data Limitations
	6.3. Scalability
	6.4. User Limitations

	7. Conclusion
	7.1. Summary of Contributions
	7.2. Implications
	7.3. Future Work
	7.4. Final Remarks

	References
	Appendix A: Full Source Code of AI-Generated and Audited Smart Contracts
	Appendix B: Meta-Llama-3.1-8b-Instract Model Card in SageMaker Jumpstart
	Appendix C: Open Web UI Running AI Models Locally

